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Abstract

The feasibility of using the Rayleigh scattering technique for

molecular density imaging of the free-stream flow field in the Langley

0.3-Meter Transonic Cryogenic Tunnel has been experimentally dem-

onstrated. The Rayleigh scattering was viewed with a near-backward

geometry with a frequency-doubled output from a diode-pumped CW

Nd:YAG laser and an intensified charge-coupled device camera. Mea-

surements performed in the range of free-stream densities from
3 xlO 25 to 24 xlO 25 molecules/m 3 indicate that the observed rela-

tive Rayleigh signal levels are approximately linear with flow field

density. The absolute signal levels agree (within =30 percent) with the

expected signal levels computed based on the well-known quantities of

flow field density, Rayleigh scattering cross section for N 2, solid angle
of collection, transmission of the optics, and the independently cali-

brated camera sensitivity. These results show that the flow field in this

facility is primarily molecular (i.e., not contaminated by clusters) and

that Rayleigh scattering is a viable technique for quantitative nonin-

trusive diagnostics in this facility.

Introduction

The application of nonintmsive optical techniques to wind tunnel diagnostics has been an active

area of aeronautics research for 30 years. With the invention of high-power lasers and multipoint detec-

tors like charge-coupled device (CCD) cameras, line or planar measurements of flow quantities such as

density, temperature, and velocity have opened new areas in fluid mechanics research. Flow density

visualization using Rayleigh scattering (ref. 1), one of many laser techniques, is the subject of this

report.

Over the last decade, our group in the Measurement Science and Technology Branch has under-

taken an effort to apply Rayleigh scattering to various wind tunnels at the Langley Research Center

(LaRC). This program has resulted in, among other results, qualitative studies of fuel-air mixing (ref. 2)

and quantitative measurements of the density profiles of strong shocks (ref. 3), both at Mach 6. We

have learned that typical run conditions in the free stream of many supersonic dry-air wind tunnels are

conducive to clustering. Although sometimes useful for qualitative flow visualization, clustering pro-

hibits the use of Rayleigh scattering for quantitative density studies because under these conditions the

signal behaves highly nonlinear with the flow density. This nonlinearity is caused by the rapid increase

of the Rayleigh scattering signal (cross section) with the size of the clusters.

We are interested in extending our work to subsonic and transonic tunnels that are of interest to the

commercial aeronautics sector. Some subsonic tunnels work at cryogenic temperatures (=100 K) to

increase the Reynolds numbers to approach atmospheric flight conditions. An example is the Langley

0.3-Meter Transonic Cryogenic Tunnel (0.3-mTCT), which uses N 2 instead of air. In planning

Rayleigh diagnostics for cryogenic tunnels, one of the early questions to answer is, "Does clustering

occur at typical run conditions?" Clustering in air usually occurs easier than in pure N 2 because of the

presence of Ar, 02, and CO 2. However, in facilities that use pure N2, clustering is still a concern

(ref. 4). The purpose of this work is to determine whether clustering occurs in the 0.3-mTCT and to

demonstrate the feasibility of quantitative density measurements using Rayleigh scattering.



Rayleigh Scattering

A well-rounded summary of Rayleigh scattering is given in reference 5. For the Rayleigh scattered

light that is imaged onto a single photodetector, the magnitude of the signal collected at 90 ° relative to

the polarization of the beam is given by

(cl(_) LPl_q_ 2 (1)P = N _--_ 90

where P is the scattered light signal (photoelectrons per second) that is detected, _2 is the solid angle

(steradians) used to collect that scattered light, q is the total transmission of the collection optics from

the sample volume to the detector cathode, PI (photons per second) is the incident power of the laser
beam in the sample volume, _ is the quantum efficiency of the detector cathode, and L (meters) is the

length of the laser beam that is imaged onto the detector. The differential scattering cross section per
molecule (meter 2 per (steradian-molecule)) at 90 ° to the polarization direction is denoted by

(dc_/d_2)90 . Finally, N is the number density (molecules per meter 3) of the scattering medium. Equa-

tion (1) is written as if all the scattered light that is collected in the solid angle _2 is directed onto one

detector cathode (i.e., a nonimaging mode).

If one is imaging the extended sample volume onto a camera, equation (1) must be used slightly dif-

ferently. In our case, we are analyzing the signal on only one row (e.g., the center of the laser beam) of

camera pixels (parallel to the beam propagation direction). The fraction of total laser power that corre-

sponds to that row of pixels is used for PI in equation (1); thus, one must know the size and shape of
the laser beam in the sample volume.

If not observing the sample volume at 90 ° to both the beam direction and polarization, two other

potential corrections to equation (1) need to be made. The 90 ° cross section may still be used as long as

the observation is in the plane perpendicular to the electric field polarization and parallel to the beam

propagation direction. The cross section is not a function of observation direction in this special plane.

The cross section must be corrected when observing from outside this plane. For our geometry, because

we are observing from this special plane, we can use the 90 ° cross section. Second, equation (1) is
appropriate for these observations only if one corrects the sample length L (i.e., increases L from its 90 °

value) for the geometrical effect of not observing the sample volume at 90 ° to the beam direction.

Experimental Apparatus

This work was performed in the 0.3-mTCT, which is a fan-driven, closed-circuit facility (ref. 6)
designed to achieve large Reynolds numbers (=3 × 10S/m) by using high-pressure (=5 arm) and low-

temperature (=100 K) N 2 as the flow medium. This two-dimensional (2-D) tunnel is used primarily for

the testing of 2-D airfoil configurations and for testing potential technology for its larger sister facility,

the National Transonic Facility (NTF).

A schematic of the Rayleigh apparatus as it was used in the 0.3-mTCT is shown in figure 1. This

view is cross sectional, with the flow coming towards the reader (out of the plane of the paper). An

80-mW CW Nd:YAG laser is weakly focused on the centerline of the test section with lenses L1 and

L2. The laser is linearly polarized, with the polarization rotated with the 1/2-)_ waveplate to be parallel

to the free-stream flow direction (i.e., out of the plane of the paper in fig. 1). About one half, 40 mW, of

the power is transmitted to the test section region.

An approximately 5-cm-long region centered on the centerline of the test section is imaged

(reduced by a factor of 1/5 magnification) onto the photocathode of the intensified charge-coupled



device(ICCD)camerawith thecombinationof lensesL3,L4,L5,andL6. In thisway,a lineimageof
theRayleighsignalalonga few rowsof pixels(Pixeldimension= 30 _tmwideby 18_tmhigh)is
obtained.Theobservationdirectionis about25° fromthelaserbeamin anear-backwardscattering
geometry.TheICCDcameraisoperatedatthestandardvideorateof 1/60sec/field,with2 fieldsper
full frame.In addition,thescatterin thequasi-forwarddirectionwasalsoimagedwithanonintensified
videoratecameraatanangleof about25° relativetothebeamdirection.Thesensitivityof thiscamera
isnotsufficientto detectthemolecularRayleighsignalsbut is sufficientto detectthescatteringof the
laserbeamfromthewindowsorlargeclusters,if present.

Results and Discussion

Rayleigh Scattering

The images from both cameras were recorded directly on videotape at the standard video rate of

1/30 sec during the tunnel runs and later digitized with a commercially available digitizer. Figure 2(a)

shows the beam image from the first field of a single frame, whereas figure 2(b) shows the average of

92 successive images (first field only) acquired over 3 sec. We have omitted the second field from the
data shown in figure 2. The free-stream test section conditions are static pressure of 0.43 MN/m 2, static

temperature of 255 K, and Mach 0.6.

Figure 3 shows the light level for a single vertical column of pixels, through the brightest portion of

the beam for a 92 image average such as that shown in figure 2. The narrow bright portion at about

pixel 107 of the laser beam can easily be distinguished from the background of scatter from various

sources (primarily the windows). The net Rayleigh signal is estimated by subtracting the background.

The net Rayleigh signal, in this case, is 28 - 15 = 13 counts. The background level at pixel numbers less

that 45 has been deleted because this region is dominated by the time code information (fig. 2) that is

written at the top of each frame. The data shown in figure 3 show a typical signal-to-background ratio.

For some run conditions, the signal-to-background ratio is significantly worse than that shown in

figure 3 because of increased background level. Thus, we have averaged many data points and tunnel

runs to determine the Rayleigh scattered light dependence on the free-stream density.

Figure 4 shows 44 data points for a variety of tunnel pressures and temperatures. The pressure and

temperature combinations are always set to provide one of six different free-stream densities. Because

we piggybacked on another primary tunnel test, these six densities were chosen for the purposes of the

other test. Each datum point is an average of 92 images (i.e., 3-sec integration) such as that shown in
figure 3. Less than 44 data points are distinguishable because some data points exactly overlap.

The large scatter in the data of figure 4 is primarily due to four reasons. Statistical noise is signifi-

cant because the signal-to-noise level is small for a good fraction of our data. Three other factors con-

tribute systematic errors. First, the small signal-to-background level can contribute error if we do not

estimate the background accurately. Second, we did not initially plan for a continuous power monitor

because the laser was stable in the laboratory preparation work. However, the laser power varied much

more in the severe temperature changes of the test cell. In addition, these power fluctuations are accom-

panied by gross changes in the spatial mode. Because we are analyzing only a fraction of the Rayleigh

signal produced by a fraction of the laser profile, these mode fluctuations minimize the effectiveness of

normalizing by the total power. Lack of access to the test cell during the tunnel runs allowed only a few

scattered laser power measurements between data points. Thus, the laser power was not measured for

each data point. Laser power fluctuations that were typically 20 percent, or 50 percent at most, contrib-

ute significantly to the spread in the data of figure 4. Third, because some of the signals are close to the

detection limit of the camera, they are affected by digitization noise.



Theprocedureusedin generatingfigure4 wasrepeatedtwiceto accumulatethreetimesthedata
shown.Thetwoadditionaldatasetsagreewiththeoneshownin figure4. Theresultsof theseapprox-
imately130datapointsareaveragedforeachof thesixdensitiesandshownin figure5. Theuncertain-
tiesshownarethe+95 percent confidence levels for the means (not the populations). The number of

data points averaged at each density is different because the fraction of time at a given density was

determined by the primary tunnel test occurring simultaneously with our test. The number of points

averaged from low to high density is 3, 12, 27, 6, 39, and 44. To within the statistical uncertainty of

+95 percent confidence, we conclude that the observed light scatter signal is roughly linear with

density.

The straight line shown in figure 5 is a calculation, with equation (1), of the expected Rayleigh sig-

nal from molecular N 2 for these densities. The uncertainty in this calculation is dominated by the
uncertainty in the laser power, about a factor of 2. In addition, the uncertainty is slightly increased

because the collection solid angle and the detector sensitivity are both known to about 10 to 20 percent.

Thus, the total uncertainty in our calculation is about a factor of 2 to 3. The relatively good agreement
(i.e., less than a factor of 2) between experiment and calculation convinces us that the signals that were

detected are due to Rayleigh scatter from molecules and not clusters. We would expect to observe a sig-

nal that is orders of magnitude greater than that predicted by equation (1) if clustering was occurring.

The linearity of the signal with density reinforces the conclusion of negligible clustering under normal

mn conditions for this facility. This conclusion is in agreement with previous laser Doppler velocimetry

(refs. 7 to 9), which did not find large particles in the natural and normal flow.

Observation of CO 2 Condensation

In this section, an interesting observation is discussed. We believe that we can detect the condensa-

tion of CO 2 on the plenum side of the inner windows. Before cooling to cryotemperatures, the facility is

purged with N 2 at room temperature to remove room air. CO 2 exists in the N 2 supply as a small (5 ppm)

impurity and in the residual air that is not completely purged from the plenum. This condensation is

observed by measuring the brightness of the scatter of the laser beam where it propagates through the

test section windows (i.e., the inner windows of fig. 1). The brightness of the scatter is taken from the

signal levels from the unintensified CCD video camera. The temperature of the windows was deter-

mined by mounting a thermocouple on the outside wall of the test section, near one of the inside win-

dows shown in figure 1.

With the CCD video camera that looks at the forward scatter with a wide field of view, we observe

the scatter from the points where the beam intersects both the outside and inside surfaces of the test sec-

tion windows. We can easily resolve the two (inside and outside) spots on the closer window. If the

tunnel is run for long periods of time at 255 K, for example, we observe relatively weak scatter for the

outside spot (the side of the window facing the plenum not the test section). This same scatter on the

outside of the window steadily grows brighter with time after the test section has been cooled down

below about 200 K. Below 200 K, this pronounced scatter from the windows is worse (brighter) with

short purge times (5 rain) and is better (dimmer) with long purge times (30 rain).

The strongest evidence for our assertion of CO 2 condensation is observed when the tunnel is

warmed back to room temperature. As the temperature of the test section passes the region near 225 K

the scatter from the outside spot quickly gets much weaker. This happens over a period of 2 min,

whereas the entire warm-up time from 150 K to room temperature is typically a few hours. Thus, the
large reduction in scatter occurs within a few degrees of 225 K. At =0.1 MN/m 2 (i.e., 1 atm), CO 2 subli-

mates from a solid to a gas at about 225 K. Thus, we postulate that we are observing the condensation

of CO 2 when cooling below 225 K and sublimation when warming above 225 K on the outside window



facethatis in theplenum.Weobservedthisbehavioronall threedifferentwarm-upcyclesthatwere
monitoredforthiseffect.

Thistemperature-dependentbehaviorwasnotseenontheinsidefaceof thetestsectionwindow.
Ontheinsidewindowface,thebrightnessof thebeamscatterwasobservedtoslowlyincreasewith the
totaltimethatthetunnelhadbeenrunregardlessof temperature.Whenthetestsectionwasopen,we
wereabletocleanbothwindowfaces,andclearlyoil wasontheinsidefacesbutnosignof oil wason
theoutsideface.Thuswe areseeingtwo effects:temperature-independentoil accumulationon the
insidefacesof thetestsectionwindows,andstrongtemperature-dependentCO2condensation(andsub-
sequentsublimation)ontheoutsidefacesof thetestsectionwindows.

Futureworkusingopticaldiagnosticsandwindowswill havetocircumventthiscondensationprob-
lem. Althoughthecondensationseemsto occuronlyon theplenumsideof thewindows,wesuspect
thattheplenumdoesnotgetpurgedwith N2 aswell asthetestsectionbecauseof restrictedflow
betweenthetwocavities.Thus,theextremelysmoothfinishesonthemodelsurfacesthatarerequired
forworkathighReynoldsnumbersareprobablynotbeingcompromisedbycondensationof CO2.

Concluding Remarks

The feasibility of Rayleigh scattering diagnostics on the high-density (=3 × 1026 molecules/m 3) N2,

free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-mTCT) has been

experimentally demonstrated. With a near-backward scattering geometry, we have imaged a CW

40-roW laser beam at 532 nm using an intensified charge-coupled device (ICCD) camera. The

observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute

signal levels also agree (within =30 percent) with expected signal levels based on the well-known quan-

tities of flow field density, Rayleigh scattering cross section for N2, and the camera sensitivity, which is

independently calibrated. These results show that the flow field in the 0.3-mTCT is primarily molecular

(i.e., not contaminated by clustering). Thus, Rayleigh scattering is a viable technique for quantitative

nonintmsive diagnostics in the 0.3-mTCT and, possibly, its larger sister facility, the National Transonic

Facility. In addition, this work shows that, in the 0.3-mTCT, imaging of the flow field density is

possible.
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Figure 1. Schematic of experimental setup of Rayleigh instrument in test section of 0.3-mTCT.



(a)Singlefieldofoneframe.
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(b) Averaged over 92 frames.

Figure 2. Raw images of laser beam as it appears in quasi-backward direction. Free-stream flow conditions: Mach,
0.6; static pressure, 0.43 MN/m2; static temperature, 255 K.
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